首页> 外文OA文献 >Monotonic variable consistency rough set approaches
【2h】

Monotonic variable consistency rough set approaches

机译:单调变量一致性粗糙集方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider probabilistic rough set approaches based on different versions of the definition of rough approximation of a set. In these versions, consistency measures are used to control assignment of objects to lower and upper approximations. Inspired by some basic properties of rough sets, we find it reasonable to require from these measures several properties of monotonicity. We consider three types of monotonicity properties: monotonicity with respect to the set of attributes, monotonicity with respect to the set of objects, and monotonicity with respect to the dominance relation. We show that consistency measures used so far in the definition of rough approximation lack some of these monotonicity properties. This observation led us to propose new measures within two kinds of rough set approaches: Variable Consistency Indiscernibility-based Rough Set Approaches (VC-IRSA) and Variable Consistency Dominance-based Rough Set Approaches (VC-DRSA). We investigate properties of these approaches and compare them to previously proposed Variable Precision Rough Set (VPRS) model, Rough Bayesian (RB) model, and previous versions of VC-DRSA.
机译:我们考虑基于集合的粗糙近似定义的不同版本的概率粗糙集方法。在这些版本中,一致性度量用于控制对象对上下近似的分配。受粗糙集的一些基本属性的启发,我们发现从这些度量中要求一些单调性是合理的。我们考虑三种类型的单调性:关于属性集的单调性,关于对象集的单调性和关于优势关系的单调性。我们表明,到目前为止,在粗略近似的定义中使用的一致性度量缺少这些单调性。这一发现使我们在两种粗糙集方法中提出了新的措施:基于可变一致性不可区分性的粗糙集方法(VC-IRSA)和基于可变一致性优势的粗糙集方法(VC-DRSA)。我们研究了这些方法的属性,并将它们与先前提出的可变精度粗糙集(VPRS)模型,粗糙贝叶斯(RB)模型以及VC-DRSA的先前版本进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号